EXSOLAR
  • Home
  • About
    • Meet The Team
    • Digital Signage
    • ExSolar Electrical Services
    • FAQ
  • Systems
    • Custom Solar Quote
    • Installations Gallery
    • Backup Systems
    • Grid Tied Systems
    • Camping & 4x4 kits
  • Products
    • Inverters >
      • Portable Power
      • Victron Inverters
      • Hybrid Inverters
      • Fronius Inverters
    • Batteries >
      • Freedom Won LiFePO4
      • Solar MD Li-Ion
      • Deye LFP
      • Sinotec LiFePO4
      • Lead Calcium Batteries
    • Battery Products >
      • Battery Monitors
      • Battery Management Systems
      • Isolators and Combiners
      • Battery Protect
      • DC-DC Converters
      • DC-DC Chargers
    • Panels >
      • Poly Panels
      • Mono Panels
    • Allbro Electrical
    • Chargers & Charge Controllers >
      • Solar Charge Controllers
      • Chargers
    • Victron Accessories
    • Cables
    • System Monitoring
    • Storage Solutions
    • Mounting Structures
  • Energy Efficiency
    • Heat Pumps
    • PowerTrim
    • Smart Energy Monitor | PiMx
  • Specials
  • Blog
  • Contact Us
    • Training
    • Technical and Installation Support
    • Repairs Returns Policy
  • Home
  • About
    • Meet The Team
    • Digital Signage
    • ExSolar Electrical Services
    • FAQ
  • Systems
    • Custom Solar Quote
    • Installations Gallery
    • Backup Systems
    • Grid Tied Systems
    • Camping & 4x4 kits
  • Products
    • Inverters >
      • Portable Power
      • Victron Inverters
      • Hybrid Inverters
      • Fronius Inverters
    • Batteries >
      • Freedom Won LiFePO4
      • Solar MD Li-Ion
      • Deye LFP
      • Sinotec LiFePO4
      • Lead Calcium Batteries
    • Battery Products >
      • Battery Monitors
      • Battery Management Systems
      • Isolators and Combiners
      • Battery Protect
      • DC-DC Converters
      • DC-DC Chargers
    • Panels >
      • Poly Panels
      • Mono Panels
    • Allbro Electrical
    • Chargers & Charge Controllers >
      • Solar Charge Controllers
      • Chargers
    • Victron Accessories
    • Cables
    • System Monitoring
    • Storage Solutions
    • Mounting Structures
  • Energy Efficiency
    • Heat Pumps
    • PowerTrim
    • Smart Energy Monitor | PiMx
  • Specials
  • Blog
  • Contact Us
    • Training
    • Technical and Installation Support
    • Repairs Returns Policy

ExSolar Blog

Matching solar modules to MPPT charge controllers

13/3/2019

0 Comments

 
Picture
Life used to be so simple; in a 12V battery system you took a ‘12V’ solar module, watched carefully that the maximum PV current would not exceed the charge controller maximum current and the system would work.
Unfortunately due to the fact, that with PWM controllers the PV module is not feeding the battery from its maximum power point (MPP), the system loses a lot of energy. In the following diagram you can see, the area of the MPP in blue  (Vmpp * Impp) is up to 30% larger than the PWM area (Vbatt * ~Isc) within the IV curve.
Picture
So, with the advent of the newer Victron Energy Blue Solar MPPTs, things changed for the better when compared to PWM solar charge controllers.
  • If a specific yield is the goal, the 30% higher efficiency of the MPPT will reduce system costs, because the same energy can now be produced with a smaller PV generator.
  • If the size of the solar module was already fixed, the yield is now higher in the same system when using an MPPT.
In both cases the user is a winner!
Sizing the system can be done electrically to see if the system is allowed and will not destroy any components, when looking at the yield to see how much energy it will produce. For now I will look at the first part, to find out what is possible on the electrical side.
By adding a DC/DC converter in the Blue Solar MPPT controller, the system also becomes more flexible when we look at the input voltage of the controller. The challenge now, is to match the PV modules to the controller, because we are not concentrating on only ‘12V’ or ‘24V’ modules anymore. Basically any module can now be used if it is within the input voltage range of the charge controller.
In fact we can now put modules in series as well as parallel, which will also increase the input power and flexibility. Thanks to the output power or current limiter, the output power will never exceed the maximum of the controller. This Blue Solar MPPT feature is unique and makes the charge controller even more interesting!
You can now for example add the same type of modules in parallel later without the need to change the MPPT charge controller. This reduces costs to a minimum, whilst still increasing the yield!
Also, I took the values for all our Blue Solar MPPT charge controllers and Blue Solar modules and combined them into a Spreadsheet. Now sizing a Blue Solar MPPT charge controller is easy!
Picture
Download: VE-MPPT-Calc.xlsx (744KB) – This configuration spreadsheet is compatible with MS Excel.
Now for the technical explanation, for those who would like to know some more details:
Exceeding the input voltage range will (as it did with the PWM controllers) damage the controller permanently. 
Of course we will also need to take a look at the minimum voltage, where the Blue Solar MPPT controller will start working. If you take a SPM50-12, the Open Circuit Voltage (Voc) is 22.2V and the maximum power voltage (Vmpp) is 18V at Standard Test Conditions (STC) which means 1.000W/m² irradiation, 25°C cell temperature and an Airmass of 1.5. If the cell temperature is higher or less than 25°C, this voltage reduces or increases due to the temperature coefficient, in this case -0.34%/°C (see Blue Solar module datasheet).
So if you take 3 modules SPM50-12 on a Blue Solar MPPT 150/70 in a 48V system on cold days say, -10°C (only looking at the voltage), you can start up charging:
The startup voltage is 48V + 7V (see MPPT 150/70 datasheet) = 55V The modules will produce 3 * ( 22.2V + (-0.34% of 22.2V * -35°C temperature difference)) = 74.5V 74.5V is higher than 55V -> that’s perfect
Also running in the MPP the system would work:  
The running voltage is 48V + 2V (see MPPT 150/70 datasheet) = 50V The modules will produce 3 * ( 18V + (-0.34% of 22.2V * -35°C temperature difference)) = 61.9V 61.9V is higher than 50V -> that’s perfect
Doing the same thing, when the modules get warm during the day, in this case 70°C you can see what happens:
The startup voltage is still 48V + 7V (see MPPT 150/70 datasheet) = 55V The modules will produce 3 * ( 22.2V + (-0.34% of 22.2V * 45°C temperature difference)) = 56.4V 56.4V is higher than 55V -> that would work
But now in the MPP the module voltage is lower than the minimum:
The running voltage is 48V + 2V (see MPPT 150/70 datasheet) = 50V The modules will produce 3 * ( 18V + (-0.34% of 22.2V * 45°C temperature difference)) = 43.8V 43.8V is lower than 50V -> this is not enough!
The high DC/DC conversion efficiency (97.5% at 48V) will result in following output maximum charging current (@ -10°C) of 61.9V Vmpp* 2.74A Impp / 48V Battery voltage * 0.975 Efficiency = 3.45A This is far below the maximum of 70A, so it will be all used to charge the battery.
Increasing the number of modules per string to 6 in series and making 10 strings in parallel gives the following result at -10°C:
Picture
The Voc will remain under the maximum of 150V at -10°C
Picture
Now at high temperatures such as a 70°C cell temperature the system will work just fine! Taking this example in the Spreadsheet you can now  increase the number of strings in parallel and you will see, if starting at 11 strings, that the controller will start to reduce power. The big advantage in doing this is that you will now produce the maximum controller output at a lower irradiation. As module prices decrease, this is an effective option.
Please note, that you can use ‘preconfigured’ minimum and maximum temperatures. I’ve also given some installation examples, at the bottom of the spreadsheet, with their anticipated module temperatures for various types of installations.
Oversizing a PV arrayOversizing a PV array is installing more peak power (Wp) than the maximum charge power of the chosen MPPT charge controller. A common reason to oversize is to cater for winter time.
How to determine by how much you can oversize a PV array? This can be done with help from the spreadsheet tool. Here though is the manual explanation of how it is done.
There are two limits, when determining the maximum array size that can be connected to an MPPT:
  1. The Maximum PV open circuit voltage (Voc at STC)
  2. The Maximum PV short circuit current (Isc at STC)
Both values are specified in the datasheets of all our MPPT Solar Charge Controllers. Those two ratings of the PV array must not exceed these MPPT limits.
Note that these two maximum ratings must not be multiplied to determine the maximum installable peak power. Instead, each of them needs to checked by itself:

Determining the maximum PV open circuit voltageFirst look at the datasheets of the solar panels to see what their maximum open circuit voltage is. Then multiply that by the number of panels that are in series in the array. The result of the multiplication must not be higher than the Maximum PV open circuit voltage as listed on the MPPT Datasheet. Make sure to take into account the coldest expected temperature. The colder it is, the higher the open circuit voltage on a PV array will be.

Determining the maximum PV short circuit currentGet the maximum PV short circuit current from the PV Panel datasheet. Multiply by the number of panels in parallel in the array. Having more panels in series does not change the number.
The result of the calculation may not exceed the Max PV short circuit current as specified in the MPPT Datasheet.
Good luck and enjoy sizing the BlueSolar MPPT Charge Controller!


Article courtesy of Victron Energy 
0 Comments

Your comment will be posted after it is approved.


Leave a Reply.

    Authors

    Marketing Manager for ExSolar Solar Solutions

    Archives

    May 2024
    March 2022
    February 2022
    January 2020
    May 2019
    April 2019
    March 2019
    February 2019
    January 2019
    December 2018
    November 2018
    October 2018
    August 2018
    July 2018
    April 2018
    June 2017
    April 2017
    March 2017
    December 2016
    September 2016
    June 2016
    May 2016
    April 2016
    March 2016
    January 2016
    December 2014
    November 2014
    October 2014
    September 2014
    August 2014
    May 2014
    April 2014
    February 2014
    January 2014
    May 2013
    September 2012
    July 2012
    March 2012

    GET IN TOUCH WITH US

    You are receiving this communication as a customer listed on our database. From 1 July 2021, compliance with the Protection of Personal Information Act (POPI Act) requires us to ensure that those we communicate with have opted to receive our messages and other relevant information. If you would not like to receive messages and other relevant information from us in future, please send us an email to [email protected] , requesting the removal of your details from our database.
Submit
Disclaimer: Please note that ALL pricing on the website is subject to change due to stock availability. 

Email

[email protected]

​Tel

+27 21 851 1700

Hours

Mon-Fri: 08h00 - 16h30 (Admin & Retail Shop)
Saturday : 08h00 - 13h00 (Retail Shop Only)
​Weekend and After hours enquiries to be sent via email